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ABSTRACT

One possible technique for accelerating a plasma to

a high Mach number is that of passing a magnetic field

through the plasma. This technique, called the traveling

wave pump, is characterized by a complicated set of differ-

ential equations. These equations have been approximated

by a one-dimensional steady state form. Several approxi-

mate integrals are found for the one-dimensional equations.

The results indicate that the viscosity losses in the system

are not excessive. The results also indicate that the inlet

velocity profile should be as uniform as possible and that

the magnitude of the inlet velocity should exceed e-lle times

the wave speed by an appreciable amount.
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CHAPTER. I

ANALYSIS

The complexity of the flow in the TWP accelerator seems to

require a simpler procedure for a working approximation. Since the

TWP is an A.C. apparatus the first step is that of reducing the equations

to the form of steady flow. The one-fluid model will be used. The next

step is that of reducing the equations to one-dimensional flow. These

steps which give simpler, though more approximate set of equations

are outlined below.

Consider first the continuity of mass,

Of

where

= mass density

1V= mass velocity

r = time.

If this equation is integrated over a volume (this volume is not time

dependent) and the divergence is converted to a surface integral, one

obtains

Manuscript released by the authors December 1962 for publication as an

ARL Technical Documentary Report.
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Equation (2) is then integrated over a period, i.e.,

di' 490Y 0f , ~ t (r

and if

then this term vanishes. The second term is evaluated over a stream

tube of cross section Re(z) lying between Z and 2 o" &/z

Thus the continuity reduces to

This volume corresponds to the control volume used by Shapiro.

Similar treatment of the momentum equation results in the

average one dimensional equation,

where

AV = local Mach number

S= pressure

= ratio of specific heats
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df = total body force acting on the control volume in

direction opposed to 14

r(f T' Of) d*jdfZ) dZ

V = hydraulic diameter

0 =4 area of duct
perimeter

r = friction factor

The energy equation is also averaged over the period and gives

where Oro = specific heat at constant pressure

OIQ = work and heat added to the contents of the

control volume per unit mass of contents

The state equation is

= /.a+ d k af dr (7)

The next step is that of evaluating the averaging integrals, which

can be calculated from the results given in Ref. 2 after computing the

electric and magnetic fielfds. When the magnetic Reynolds number per

unit length based on the slip velocity ( (CA .) ), is small,

the attenuation of the coil is small and ". (C&4.) is small. The
do

arguments of the Bessel functions describing the fields below are real,

3



with A' R . . The fields are given below for this case:

r =,,N.Z" 2, (4,,) Gts e,) s, ,4
8 0N X re

,e =.,. ,iVZ Zo (1') OeR) e" 4

= -,,,oIA A 'r '. (X,, r) S.;.,

/ : E- fz (AOP) (IRS) (e -v,

The force per unit volume is

4 6 Mr). .z e'6 oie.) sb',, .r ac s 2 )

The total electrical energy added per unit volume, per unit time (i.e., the

total power addition) is

/ r "  =  Nr) " ) ,;;:c sin, a:) c(e- v

where

1'e a dole /, ez -et)

4



and

= (AA) =

where Z(N) and X(AN) are Bessel functions of the first and second

kind, respectively, of order N having imaginary argument.

For KR.---b 0 (AR)2--*. 2 '2 0 1&4)- n (ArR) /

The force on the control volume of length Z then becomes

jZ= - -Jd. ). z'z'..c-)
z A g

.:r a..v4A r,' z a¢ -,VZZ tA'j] times,,

4 .It e- gr,] z
=~~~ Rf r) NI) (rfff) rdeC

r'e~~ Ift T

&R,&', Z, 7 A((k) -2r f zz (ir:V)

O is a weighting function which adjusts &4. , the mass average

velocity to account for the variation in magnetic field across the tube.

In the case of slug velocity C =l.
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Let

de (tR) -)
rh@4 4S 00 Ir A • A 'R

and

and

'Oe,)z) (RwJP ere- M) d

A one dimensional form has also been deduced by Williams in Ref. 3.

However he fails to account for C.

Equations (4), (5), (6), and (7) describe the process to be

analyzed. Since these equations constitute a non linear system, it

seems most practical to follow Dahlberg's suggestion in Ref. 4 and study

the phase plane in search of closed form solutions.

The momentum equation then becomes:

IL



Using A PP P ?

or

The energy equation (6), neglecting the ionization term, using the

equation of state and expanding --- K , becomes

r / R p

From (4b) and (7)

dr do d,d = dP -w dP Z ds9

so

Se[ d'P !. Picd "I d
;ZL- dz dX d dz"

7



leading to

4 dldx

Solving for
dz

'ALI

Slibstitutin g in (9) ;id (collc titig terms

If,, ],,

- f~c;~p]a7%s&AZ)~
b0 7

Pa (A (L~



lxamination of these two equations indicates that

a. there is a critical line corresponding to,) Z.

or since 5, and P are not generally zero this

line corresponds to M ul

b. there are singular points where u . This

occurs if

i. IA M and

When this singular point is located within the region of interest it offers

a possible termination for the process.

9



CHAPTER II

DISCU SSION

First consider the equations (11) and (12) in the physical plane.

These two equations can be integrated numerically from given conditions

at the inlet, to the outlet of a TWP device once its geometry has been

specified.

In order to find the circumstances which will lead to an increase

in Mach number, consider the following expression from Ref. 1 which

follows from the momentum state continuity and energy equations.

This can be rewritten as:

. Mf --ft = /0 /_.

/-d / I/. d/ / A

10



Consider the case when the friction cancels the area change.

This case exhibits the effects of the magnetic power addition only.

dAM
For - to be positive

dxM

dldta

For this case a. a 0 lines for constant values of r are shown
dAy CAin Fig. 1. These lines separate the plane into r < 0 and -> O

regions. Also for this case if of" is also to be positive, etiC

must be greater than L daz

This constraint is considerably less stringent than the previous

df. dM
one,( 7 can be positive when is 0 or negative) hence it
will not be plotted.

Dahlberg (Ref. 4) has shown that Eqs. (11) and (12) can be put

into a symmetrical form by the proper choice of nondimensional

variables. -o A

Choose "On . and P u V -i as new variables and
O at c

express the equations in terms of two nondimensional parameters:

Ia and 9 4 ± a 0(6419

and the characteristic length L- =

For the case of constant phase velocity ' and gas properties the

equations become

a, d," ,

11



For the case with cylindrical symmetry is the equivalent

average field.

'Vr

Tn terms of these variables at the singular point mentioned

above, - 0 , i.e., the nondimensional pressure

and velocity become constant giving in a sense a bfully developed,"

stationary solution, although, of course, the dimensional pressure must

decrease along the duct to balance the friction under this condition. The

nondimensional variables thus give a much better description of the

termination point of the process.

This .singular point toward which the magnetic pumping drives

the flow, must be located in the supersonic part of the phase plane and

the friction must not be too high if supersonic acceleration is to occur.

These limits are expressed by regions * and A of the 0. 1"

plot of r'.ef. 4 and impose the co,,,traints:

12



CHAPTER II

SOLUTION IN THE PHASE PLANE

Equations (15) and (16) are identical to those of Dahlberg (Ref. 4)

when the variation of the field with radius is accounted for through Ug
and O the velocity averaging factor. We follow his procedure

dividing (16) by (15) to obtain

41P rgr- I rD - ) + o(js4&,, P)

The ':' s have been omitted; however the nondimensional variables

(defined in (13) and (14)) are still being used.

Following Lighthill (Ref. 5) let

P a A ORr + ,, r) 20..
and (l#g)

L a 4' Ivu.(')4..

de. datdfv

d. = ,,+ ,, ...
dv

('0)
dvr

13



(17) can then be re-writtenOFP -/),/&.0 ) 0 JA (0.,4 ,] O-,&L [M- -,,,,.,,).,

A M(P, IA -(# )- (120)

Substituting (18) and (19) into (20) and equating powers of VF,
the nondimensional area change parameter, we obtain the 0 order

equation for *1

and the two first order equations:

(of) x -/# 5 #' (22)'~ fo ( ,/ .- -L- ) + 0 A"O'
CO

and

U" ,','6r)u, =IA, ' (*s)
where

(cw.-/)6P tv,-,) VzO'. wz)

(ar#-/) 4r-/) -, (b' .!)t (

and
2r9 = (C~X-,) (" ,r-/) "s"'6' .r)

le (Or)),r~~t

r1

14



Equation (21) is a first order, linear differential equation for Po

which can be reduced to quadratures and integrated in the case when

is small. - 0 is a regular solution of (22) which is chosen to sat-

isfy the initial conditions that at g , 06 W P . -ZP

After solution of (21), (23) can be reduced to quadratures, but it

involves a great many terms and an approximation to the logarithmic

function even for sinall P and

a. The Solution for 20

Collecting the terms in ( 23) we obtain

4V .0 Ot'#-I / J% (t ' 0) r . r, to v

The solution of this equation is

O. ') itt r , , - z % #p .je , d fl (2S )

where

B) dx

15



This can be integrated* to give

/ +$ r.,#t)-(-~. e.e

using this result (Z5) becomes
z)

where the following abbreviations have been used.

MaMR

For the Logarithmic function to be the solution, ( "> (Ct

is required. Rewriting this condition as
at-4 -#- 3,0

it can be seen that with

this condition is nearly always met. For example, the limit is 0 .-C2J.

For the worst condition of it 9/ re/. s.

16



2

to o - f/.

fr _ __r Ou

The second term of (26) cannot be integrated in general; but when 50 is

small (see Appendix II), the expression can be integrated directly since
M --b- / -400.

For O-oe/ and absorbing a attnerical factor in the constant

Cr

I r - - I€-L

L (,.,..f )

17



* 4

n (-dL -0-a.0)0) z I  &aT
whe e rwgdJ £

where A R - -- a. For any physical situation

(a *&O)J appears to be negative.

b. Iligher Order Terms

Since the substitution of (Z7) in (Z3) leads to a quadrature which
offers little advantage over direct numerical integration in the physical
plane for a specific geometry device, further attention is directed only
to the simple case of constant area which is integrable directly.

a) Constant area (P' a 0) no friction ti n O)

When PB'O 4dozo .48P. the general phase

18



plane trajectories are shown in Fig. 4a of Ref. 4. With these simplifica-

tions

pIn U -

length can be introduced again by using (15) and (28).

(a U -(,) (U- )

o919

d"- 
-

P ill 2I

C A

dzdu

F______ A

a/- + _ duI ' c~) (U UiO

19



where

Uln- 2

A -

+ -2 + O (

A= =+[ =_.R- d _,)

a- (, )8-"in
z = 2

at C7 +A Lit( --~&)+~L (da-I (29)

C is of course determined by the condition that at the inlet Z = 0

p = Pinlet , U - M/Opf

Ca = -[ The rest of the right hand side] evaluated at d a&

b) Y 80 (constant area) 0 4C I (small friction) the

general phase plane for this case is shown in Fig. 4b of Ref. 4. Super-

sonic acceleration in this case is confined to every small region of the

20



phase plane and can oc:ur only when # < //4'r'-i).
Then

(P)- (a
d CIO

+a dl O a (d/) + ( ) 

a ,1 Lm -[a*(a #)u1] (30)

where

+ (a+ (a,+,0)uiO) .,a ,+2 (d + -) a*0 ( ,a J

+ a 2+°a+, 46/ [~ +0]
a* Lr0 [a + (cf*$)uin

For this case (15) givesAU-- (ou -I) (U- R + 56U,
d I

d1 "= al--u(1P-( -,)+
-( -,)



neglecting powers of greater than the first (30) becomes:

e r (aru -/)",+2(au-O o6

-- d 2 /. + 0)

" (c6f 6+0l) Ln (/- a ) (32)

where

R

(-Co

Integrating (31) with (32) we obtain

z = ,[ - -/ r,I) ,C - , ,,O O

a-___ 0(d 6+1) 1
CI 614 - 05 (p33)

where all the integrals can be found explicitly ex,'ept Zj. which requires

the approximation Ln ( a - (aut ( 01 (AM)") where *

is taken to give the best approximation to the LPI over the range of af(

of interest (see Appendix II). For aU I . 6 3 gives

22



about 4 per cent error under the worst condition (G'A R .S) . Since this

term is of order 6 the error introduced in Z should be small. The

above integrals are as follows:

du

A~A. 22

f/ + 40 ) _R +/ aR)

+  +

+ d

A3  A23 1
(a ~C C0

- + +

Is5 A(5 * 1)- du

23



whecr e

A22  - a

A1 = c4.&

a()aa#*a e-C,-6cd*6,Zar+*a]

I-1- I2 06l(a-+h

24



a3 a(/-d) V-9 1, [a 26 -2 a6i

B3 raR

04C [2 / ]ao

EaR . O

'5 +2 a s

raR5



0) /d R ?*2) fa(G6* Cj [(o)a

9 SA25 = ... a..

( -C6 +2 v-J.$)

with the above substitutions (33) becomes:

C

Z = a1  A , / 14m -I

+ 1__ I l a__ L,,,.__-_s,

, -2 M

( /j-R ) 

Z6



FOR 12 LC I0
[. -- 1+ 2 #6 J1 ooJ

I p

27



(2 Ln a* u - #80

at+ OW ilt h ) ae consat inovn1da

[ 1_. C 10

_6-~ _ . _+2 616 (o *" )

10

{3}Ln[(a #)~ -(-#

+[rR - 'Z + 2t? (a # 3  (3$'

where C2 - I everything else on the right hand sidej evaluated

at U u wet The ( ) I are constants involving '

and E6 the Logarithmic approximation, specifically

(4:: - a
2 C(of

28



{4 = - F2rd a+ -d*2

2 + 4

+Cal (at6 +6+1]
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CHAPTER IV

CONCLU SION

The expressions found by the method of Lighthill for P(14) and a(Z)

for one dimensional compressible flow at constant area should facili-

tate the interpretation of the experiments with the constant area TWP

with small friction. Although this method produced a quadrature for

the first order component of velocity due to area change, it beems

doubtful that evaluating this expression would result in any simplifi-

cation over direct numerical solution for a specific case.

The results also indicate the regions of operation in the

local Mach number plane. This plane illustrates the conditions that

must be satisfied to increase both Mach number and velocity in this

kind of process. This curve seems to offer the suggestion that,

according to the one-dimensional flow it will be necessary to

increase the phase velocity of the wave as it travels down the accel-

erator. The one-dimensional approximation also indicates that the

performance is improved by making the inlet conditions of the gas

as uniform as possible.

The calculations in the appendix indicate that in terms of Dahl-

berg's nondimensional friction, the friction will be small in devices

operating at low pressures. The advantage of maintaining a disequi-

librium between electron temperature and gas temperature is apparent,

since elevated electron temperature gives increased conductivity with-

out the increase in viscosity which accompanies increased gas tempera-

ture. Some data is also presented in Appendix I which serves to compare

various gases in terms of the friction parameter

30
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APPENDIX I

THE NONDIMENSIONAL FRICTION FACTOR

Dahlberg (Ref. 4) defines the friction parameter - .

in terms of the friction factor In erms of the skin friction coeffi-

cient, , this becomes 96 A " " can be approximated

as the laminar or turbulent skin friction coefficient depending on the

magnitude of the Reynolds number, Rz- From the perfect

gas law it follows that

j~~ ) = __ ) X.O0166PIA I r (oK,}

where P is in mm of mercury T is in °K and p is in MI Aof

is the molecular weight. Using the simplified kinetic theory of Hirsch-

felder, Curtis and Bird. (Ref. 6)

2 where 0r is the equiv-

alent rigid sphere molecular diameter in Angstrom units. Substituting

into the Reynolds number we obtain

" l0 VAW4) .- S

for T at 5000*K and 1 mm pressure with

D M. /at & an/04.014M Ad=,a
For Reynolds numbers of this order the laminar skin fZiction will certainly

be applicable in which case

ev.$

With the above relations the friction parameter becomes

33



-4'~/1  (A V )' As

for nitrogen at 5000°K and 1mm pressure with 2./ weber/meter

and 0- z /00 # ll I •'6X /0 j

In Table I the appropriate constants for some commonly uised

gases are given to facilitate a comparison of their performance in

the TWP.

TABLE I

Proportional to

V I. -

Cross Section Molecular (7) ) (0)
(Angstroms) Weight

Na 3.75 28 .376 74.5 3.25

He 2.18 4 .42 9..5 1.3

A 3.64 40 .48 84 4.4

H2  2.92 2 .166 12.1 .57

Air 3.7 Z9 .394 74 3.4

Hg 3.56 200 1.14 180 15.1

N 1.68 14 1.33 10.5 4.3

CO, 3.89 44 .44 100 4.37

CH 4  3.79 16 .278 57.5 2.1

From the above table it appears that hydrogen has by far the beat

characteristics as far am the frictional losses are concerned. For most

of the cases of interest the small 0 assumption appears to be justified.

J This equation can also be written in terms of the Mach number,

U/9 It becomes

34



APPENDIX II

APPROXIMATION TO THE LOGARITHMIC FUNCTION

In order to approximate IS, consider the first two terms in

the series for 'e-,J de- Vf ) tw so j (D J1i
In order that the integral be expandable in partial fractions the numer-

ator must be of order 2 or less. We choose the approximation

1'. (/I- a,') z - ra'1A' If1") 1  where 4( is matched at a

point near the average of ty over the acceleration range of interest.

For C C . r sf gives a good approximation, the rangerang
of validity of a particular value getting worse as OW =/ is ap-

proached. Values of 6 for a perfect fit at a given value of t are

given below.

au 1A 4 for 01 r" -oftNIA)

.4 .69

S.77

.6 .89

.7 1.0z

.8 1.25

.9 1.48

.95 2. Z8

35



APPENDIX III

THE FIELD-VELOCITY WEIGHTING FUNCTION

Because the fields in the TWP vary so strongly with radius, if &R O
is large the field-velocity weighting function, O , must be included. In

the text Oe is defined by

To predict the performance of a TWP device by means of the one-dimen-

sional approximate analysis, a knowledge of the behavior of O for

different velocity profiles, and various magnitudes of &R 0 is required.

Assuming the density is constant across the cross section, 6L

the mass average velocity, .i Y'e Vr) dr

As a simple representation of a general velocity profile assume

Vfr) a- r

an represented in Fig. A-I. Then

and *0

36



4./42 (K t .jd,7

The last term in the 7 requires a numerical integration or

an approximation to Z . For small argument (AR e'i)

a nd '%wo a .

Some valuesa of 09 Vs. Ie for various assumed values of
A'-, are plotted in Fig . A-I1. Note that as --.- 40-/ O. must always
approach / from below regardless of the value of AIWO . and at A*** >
this approach is very rapid fron 49 in the immediate vicinity of .- L .=-#

Because of the form of the expression for Ole the asymptotic approxi-
mation to X," does not give the right limit as -- /

Figure A- I indicates that for most applications there would be
little advantage in operating above A*,* 0 w " ' unless a very nearly

slug velocity profile was present.
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